THE UNIVERSITY OF BRITISH COLUMBIA

Mechanical Engineering

Wearable sensors for sports concussion research

Lyndia Wu Ph.D., P.Eng.
Assistant Professor, Mechanical Engineering
Principal Investigator, ICORD
Associate Member, School of Biomedical Engineering
Associate Member, School of Kinesiology
University of British Columbia



The concussion problem
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The concussion problem

Study Finds Evidence of Brain
Injury in Living NFL Veterans

More than 40 percent of retired NFL players showed signs of traumatic brain injury

Pathologically Confirmed Chronic Traumatic
Encephalopathy in a 25-Year-Old Former College
Football Player

Jesse Mez, MD, MS'Z; Todd M. Solomon, PhD'; Daniel H. Daneshvar, MA'?; Thor D. Stein, MD, PhD™45%; Ann
C. McKee, MD12458
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NFL acknowledges, for first time,
link between football, brain
disease



Concussion < Mild Traumatic Brain Injury (mTBI)

Silent epidemic
- ~75% of the 1.5M annual TBIs are ‘mild’ (CDC Report, 2003)

- Debilitating symptoms can last weeks to months

Repeat injuries exacerbate effects
- Repeat injuries -> worse outcomes (McCrory 2012)
- Associated with long-term neurodegeneration (McKee, 2010; Hart, 2013)

- Situation in sports worsened by underreporting (Booher 2003)

Image adapted from McKee 2010



Concussions often result from direct impact to head

https: neuotracker.nem017 08/22/5-risks-repetitive-head-impacts/



https://neurotracker.net/2017/08/22/5-risks-repetitive-head-impacts/

Can you see the difference?
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Brain within an intact skull is affected — how?
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Microstructural disruption
Head acceleration event Brain motion/deformation




Key questions

* When does concussion happen? How do we predict injury based
on the biomechanics of the head acceleration event?




Theoretical & animal models of injury

Holbourn Hypothesis Rotational Injuries in Monkeys Axonal Injury Molecular/Cellular Mechanisms

Brain

‘ Giant
axon

PURE LATERAL

(Holbourn 1943) (Gennarelli 1982) (Galbraith 1993) (Prins 2013)



What about human injury?

Rat
Cells

Need human data to translate the findings
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Wearable sensors gather read skull
kinematics data, from the real world
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The biomechanics approach - injury risk curve
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Accurate measurement of impulsive skull
accelerations is not trivial

Head Impact or Head Acceleration Event
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Instrumented Mouthguard

Clansey, Adam C., and Bondi, D., et al. Annals of Biomedical Engineering 52.10 (2024): 2666-2677.
Luke, David, et al. Annals of Biomedical Engineering (2025): 1-17.



Can the sensor detect events of interest and only events of interest?

Insertion/
™S Removal

Drinking/
Spitting

Head Impacts | Non-impact Events



An Impact Detection System
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) Classification
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Wu, L.C,, Zarnescu, L., Nangia, V., Cam, B., Camarillo, D. A Head Impact Detection System Using SVM Classification and Proximity Sensing in an Instrumented
Mouthguard. IEEE Transactions on Biomedical Engineering. 61 (11), 2659-68 (2014).



On-field sensing of proper sensor usage

Off-teeth On-teeth
mouthguard mouthguard distribution distribution
off-teeth on-teeth
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Luke, D., Kenny, R., Bondi, D., Clansey, A. C., & Wu, L. C. Journal of biomechanics. 2024.



Machine learning-based classification of real
Impacts

Head Impacts Nonimpacts
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Wu, Lyndia C., et al. "Detection of American football head impacts using biomechanical features and support vector machine classification." Scientific reports 8.1 (2017): 855.



Features extracted from kinematics data

411 features
* Peak kinematics ¥aov Fpl [;v_1]
Xm,1 Xm,p Ym

* Impulse durations
* Power spectral density features
* Wavelet transform features

* Biomechanical feasibility features
. Peak S0U
PSD .
8 — N
z uration % 2 3:; 200
H : © e
ey : ! $ 100
4t R = (o
Per-axis measures E o E
< 100 200 300 400 500 0
pr = Frequency (Hz) 0.05 0.1
Tre e Time (s)

Wu, et al., IEEE TBME, 2014
Wau, et al,, Sci. Rep., 2017
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Training and Validation Methods

e Support vector machine (SVM) binary classifier with radial basis
function kernel

e Classifier trained and validated using 150 head impacts and 860
nonimpacts gathered from football

* Ground truth event labels verified through video analysis
* Forward feature selection to avoid overfitting |
erformance Measures

. : L TP
* Leave-one-out cross validation sensitivity = ——— R
e T'N '
specificity = TN + FP TN: true negative
TP+TN .
accuracy = FP: false positive

TP+ TN+ FP+ FN
TP FN: false negative

precision = TP + FP
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Performance of Classifier

* Infrared sensing filtered out 75% of nonimpacts
* Machine learning filtered out an additional 24% of nonimpacts

SVM classifier performance

Sensitivity 90%
Specificity 97%
Accuracy 94%
Precision 95%

True Positive Rate
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Wu, et al., IEEE TBME, 2014
Wau, et al,, Sci. Rep., 2017
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What does a concussive impact look like?
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Evidence of Injury Directional Dependence
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Digging deeper — what’s happening in the
orain?

Hernandez, Wu, et al., ABME, 2015
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Digging deeper — what’s happening in the
orain’?

Corpus callosum Falx Constraint

Hernandez, Wu, et al., ABME, 2015



Further studies focusing on under-represented
athletes

* Head impact exposure measurements in women’s soccer, women’s
rugby, men’s and women’s ice hockey

* Filling important gap: highly biased data in existing literature
* <15% impact sensor study participants are female, 65% are American football [1]

Women’s soccer Women’s rugby Men’s & Women’s
ice hockey

27
[1] Le Flao, et al. Sport. Med. 2021



Multidomain data collection across diverse athletes

Women'’s Soccer
(2019-2021)

FRITTTTT
FITT

Men’s Ice Hockey Women’s Ice Hockey Women’s Rugby
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Control Athletes
(2021-2024)

Concussions (23 diagnosed + 1 suspected; 11 full 6DOF sensor measurements, 1 partial 3DOF)

7 3% 17 3% QP 4¢P L AP LIPS

140 contact sports athletes (96 F, 44 M); 37 control athletes (18 F, 19 M)
4283 video-verified, iMG-recorded head acceleration events, with ongoing verification and screening
300 pre/post season + 60 post-concussion multidomain MRI and neurological assessments

60 blood samples from hockey and rugby athletes
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Comparing impact biomechanics across sports
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The concussion impacts

Men’s Ice Hockey Concussions

Peak linear accel Peak angular accel

67g 11,000 rad/s?
87g 7,000 rad/s?
Og 880 rad/s?
40g 4,000 rad/s?

Women’s Rugby Concussions

2,200 rad/s?
1,300 rad/s?
490 rad/s?
990 rad/s?
1,400 rad/s?
2,800 rad/s?

4,400 rad/s?
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Head impact exposure on concussion days

63g, 11g
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Luke, D. (2023). Thesis. University of British Columbia.
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31



Head impact exposure on concussion days

Men’s Hockey
Hockey Athlete 1 (first concussion)
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Developing more advanced brain models

Worcester head injury model
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co-register
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Concussion-related impact
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Brain response can be even more complex

Symptomatology Neuroimaging: Neuropsychological
* Neurobehavioral * Myelin water * Depression scale
symptom inventory * Diffusion  Satisfaction with life
* Lesions

 Microbleeds
 Functional MRI

Sensorimotor Neurocognitive Blood biomarkers
* Standing balance * Executive function * p-tau
* Tandem gait * Working memory  GFAP

* Eye tracking * Processing speed  NF-L




Take home messages

* Wearable sensors enable capture of real-world injury events
* Real-world sensor data require extra screening to ensure quality
 Severity, frequency, timing can all contribute to injury risk

* Need to further investigate complexity in both mechanics and brain
outcomes
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